Zeros of quasi-orthogonal ultraspherical polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds for Extreme Zeros of Quasi–orthogonal Ultraspherical Polynomials

We discuss and compare upper and lower bounds obtained by two different methods for the positive zero of the ultraspherical polynomial C n that is greater than 1 when −3/2 < λ <−1/2. Our first approach uses mixed three term recurrence relations and interlacing of zeros while the second approach uses a method going back to Euler and Rayleigh and already applied to Bessel functions and Laguerre a...

متن کامل

Zeros of Quasi-Orthogonal Jacobi Polynomials

We consider interlacing properties satisfied by the zeros of Jacobi polynomials in quasi-orthogonal sequences characterised by α > −1, −2 < β < −1. We give necessary and sufficient conditions under which a conjecture by Askey, that the zeros of Jacobi polynomials P (α,β) n and P (α,β+2) n are interlacing, holds when the parameters α and β are in the range α > −1 and −2 < β < −1. We prove that t...

متن کامل

Ultraspherical Type Generating Functions for Orthogonal Polynomials

We characterize the probability distributions of finite all order moments having generating functions for orthogonal polynomials of ultraspherical type. 1. Motivation: Meixner families There is a one to one correspondance between probability distributions on the real line and polynomials of a one variable satisfying a three-terms recurrence relation subject to some positive conditions ([9]). Th...

متن کامل

Ultraspherical Type Generating Functions for Orthogonal Polynomials

We characterize, up to a conjecture, probability distributions of finite all order moments with ultraspherical type generating functions for orthogonal polynomials. 1. Motivation: Meixner families There is a one to one correspondance between probability distributions on the real line and polynomials of a one variable satisfying a three-terms recurrence relation subject to some positivity condit...

متن کامل

Constrained Ultraspherical-Weighted Orthogonal Polynomials on Triangle

We construct Ultraspherical-weighted orthogonal polynomials C (λ,γ) n,r (u, v, w), λ > − 2 , γ > −1, on the triangular domain T, where 2λ + γ = 1. We show C (λ,γ) n,r (u, v, w), r = 0, 1, . . . , n; n ≥ 0 form an orthogonal system over the triangular domain T with respect to the Ultraspherical weight function. Mathematics Subject Classification: 33C45, 42C05, 33C70

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae

سال: 2016

ISSN: 0019-3577

DOI: 10.1016/j.indag.2016.06.003